Empowered by Innovation

Mobilware 2010, Chicago, USA June 30 – July 2, 2010

Location Cognition for Wireless Systems: Classification with Confidence

Stefan Aust, Tetsuya Ito NEC Communication Systems, Ltd.

> Peter Davis Telecognix Corporation

> > July 1, 2010

To be a leading global company leveraging the power of innovation to realize an information society friendly to humans and the earth

NEC Group Vision 2017

Outline

Table of Contents

Motivation

Problem description of terminal localization in wireless systems

Proposal – Location Cognition Engine

Prototype - Results

Selection of reference distributions Location and distance cognition

Conclusion

Motivation

Problem description of terminal localization in wireless systems

Indoor Sensing	Indoor spectrum sensing (cognitive radio) is missing location information (no GPS information available)	
Location method	Selection of appropriate and simple way of terminal location cognition (fingerprint, beacon, UWB, etc.)	
Proposal	Monitoring of transmission characteristics and statistical analysis	

Location Methods

Available/proposed location methods

There are several proposals regarding terminal location Combination can improve the location cognition performance

- None of them provide a multitype location information
- Additional devices/hardware needed
- No seamless location (indoor/outdoor) cognition

Idea: Location method which is independent of additional beaconing or hardware

Location Types

Classification of wireless propagation environments

Different locations and environments have different physical characteristics:

- Indoor: high multipath fading, low delay.
- Outdoor low multipath fading, high delay.
- Different sources of ambient noise.

Simple location classification as binary location type (indoor/outdoor) is helpful

Proposal

Location Cognition Engine

Supervised location type classification based on entropy estimation by using off-line classification of wireless link fluctuations in typical locations and online monitoring and comparing of statistical distributions of wireless link characteristics.

Proposal

Location Cognition Engine

Off-line phase	 Obtaining statistical distributions (templates) of link fluctuations indoor and outdoor. Select reference distributions (false rate). Storing reference distributions in data base. 	
On-line phase	 Location cognition algorithm using: Using reference distributions from the data base. Monitoring data in the current location. Indication of location type. 	

Location type detected

System architecture

Jeffrey-Divergence (entropy estimation)

The Jeffrey-Divergence is derived from the KL-Divergence. The Jeffrey-Divergence is symmetric, numerically stable. The Jeffrey-Divergence is robust against noise and data bin size. The Jeffrey-Divergence is defined as follows (discrete values).

$$JD(P \parallel Q) = \sum_{i} \left[p_i \log\left(\frac{p_i}{m_i}\right) + q_i \log\left(\frac{q_i}{m_i}\right) \right]$$

with

$$m_i = \frac{p_i + q_i}{2}$$

We use a version of Jeffrey-Divergence where the mean and standard deviation can be used (Gaussian approximation).

Setup

2 WiFi terminals, 802.11g, AP, STA.

Indoor and outdoor measurements (UDP traffic, iperf).

Distances (5, 10, 15m), sending rates (1, 16, 18, 20, 22 Mbps).

100ms monitoring interval.

Results - mean

Short packet length

Mean (number of packets) for short (top graph) and long packets (bottom graph) at five different locations and three different distances.

Long packet length

Results – standard deviation

Short packet length

Standard deviation (number of packets) for short packet length (top graph) and long packets (bottom graph) at five different locations and three different distances.

Long packet length

Results – location

Results – location & distance

Results – location cognition

Result of correct location cognition for all locations at each distance and for 3 trials (1500 byte packet size)

Results – distance cognition

Results of increased window size to improve combined location and distance (2. trial)

Conclusion

Summary

Proposal – Location Cognition Engine

Fingerprint-type location method is an efficient way of location cognition when GPS is not available

Using link statistics as finger prints (data base) and comparing them with on-line monitored data

Prototype - Results

High accuracy for location type identification Sufficient accuracy for distance cognition which can be further improved

Next steps

Using signal strength information to increase the accuracy of distance cognition

Empowered by Innovation

